MakeItFrom.com
Menu (ESC)

C90500 Gun Metal vs. C94700 Bronze

Both C90500 gun metal and C94700 bronze are copper alloys. They have a very high 95% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C90500 gun metal and the bottom bar is C94700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 20
7.9 to 32
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 320
350 to 590
Tensile Strength: Yield (Proof), MPa 160
160 to 400

Thermal Properties

Latent Heat of Fusion, J/g 190
200
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 1000
1030
Melting Onset (Solidus), °C 850
900
Specific Heat Capacity, J/kg-K 370
380
Thermal Conductivity, W/m-K 75
54
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
12
Electrical Conductivity: Equal Weight (Specific), % IACS 11
12

Otherwise Unclassified Properties

Base Metal Price, % relative 35
34
Density, g/cm3 8.7
8.8
Embodied Carbon, kg CO2/kg material 3.6
3.5
Embodied Energy, MJ/kg 59
56
Embodied Water, L/kg 390
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
41 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 110
110 to 700
Stiffness to Weight: Axial, points 6.9
7.3
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 10
11 to 19
Strength to Weight: Bending, points 12
13 to 18
Thermal Diffusivity, mm2/s 23
16
Thermal Shock Resistance, points 12
12 to 21

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0 to 0.0050
Antimony (Sb), % 0 to 0.2
0 to 0.15
Copper (Cu), % 86 to 89
85 to 90
Iron (Fe), % 0 to 0.2
0 to 0.25
Lead (Pb), % 0 to 0.3
0 to 0.1
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0 to 1.0
4.5 to 6.0
Phosphorus (P), % 0 to 1.5
0 to 0.050
Silicon (Si), % 0 to 0.0050
0 to 0.0050
Sulfur (S), % 0 to 0.050
0 to 0.050
Tin (Sn), % 9.0 to 11
4.5 to 6.0
Zinc (Zn), % 1.0 to 3.0
1.0 to 2.5
Residuals, % 0
0 to 1.3