MakeItFrom.com
Menu (ESC)

C90500 Gun Metal vs. N08020 Stainless Steel

C90500 gun metal belongs to the copper alloys classification, while N08020 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C90500 gun metal and the bottom bar is N08020 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 20
15 to 34
Fatigue Strength, MPa 90
210 to 240
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 320
610 to 620
Tensile Strength: Yield (Proof), MPa 160
270 to 420

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 1000
1410
Melting Onset (Solidus), °C 850
1360
Specific Heat Capacity, J/kg-K 370
460
Thermal Conductivity, W/m-K 75
12
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 11
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 35
38
Density, g/cm3 8.7
8.2
Embodied Carbon, kg CO2/kg material 3.6
6.6
Embodied Energy, MJ/kg 59
92
Embodied Water, L/kg 390
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
83 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 110
180 to 440
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 10
21
Strength to Weight: Bending, points 12
20
Thermal Diffusivity, mm2/s 23
3.2
Thermal Shock Resistance, points 12
15

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 86 to 89
3.0 to 4.0
Iron (Fe), % 0 to 0.2
29.9 to 44
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 1.0
32 to 38
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 1.5
0 to 0.045
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.035
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 1.0 to 3.0
0
Residuals, % 0 to 0.3
0