MakeItFrom.com
Menu (ESC)

C90500 Gun Metal vs. S34565 Stainless Steel

C90500 gun metal belongs to the copper alloys classification, while S34565 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C90500 gun metal and the bottom bar is S34565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 20
39
Fatigue Strength, MPa 90
400
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
80
Tensile Strength: Ultimate (UTS), MPa 320
900
Tensile Strength: Yield (Proof), MPa 160
470

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 1000
1420
Melting Onset (Solidus), °C 850
1380
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 75
12
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 35
28
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 3.6
5.3
Embodied Energy, MJ/kg 59
73
Embodied Water, L/kg 390
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
300
Resilience: Unit (Modulus of Resilience), kJ/m3 110
540
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
32
Strength to Weight: Bending, points 12
26
Thermal Diffusivity, mm2/s 23
3.2
Thermal Shock Resistance, points 12
22

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.2
43.2 to 51.6
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
5.0 to 7.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 1.0
16 to 18
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0.4 to 0.6
Phosphorus (P), % 0 to 1.5
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.010
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 1.0 to 3.0
0
Residuals, % 0 to 0.3
0