MakeItFrom.com
Menu (ESC)

C90500 Gun Metal vs. S36200 Stainless Steel

C90500 gun metal belongs to the copper alloys classification, while S36200 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C90500 gun metal and the bottom bar is S36200 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 20
3.4 to 4.6
Fatigue Strength, MPa 90
450 to 570
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 320
1180 to 1410
Tensile Strength: Yield (Proof), MPa 160
960 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 170
820
Melting Completion (Liquidus), °C 1000
1440
Melting Onset (Solidus), °C 850
1400
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 75
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 35
12
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.6
2.8
Embodied Energy, MJ/kg 59
40
Embodied Water, L/kg 390
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
46 to 51
Resilience: Unit (Modulus of Resilience), kJ/m3 110
2380 to 3930
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
42 to 50
Strength to Weight: Bending, points 12
32 to 36
Thermal Diffusivity, mm2/s 23
4.3
Thermal Shock Resistance, points 12
40 to 48

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0 to 0.1
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
14 to 14.5
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.2
75.4 to 79.5
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.3
Nickel (Ni), % 0 to 1.0
6.5 to 7.0
Phosphorus (P), % 0 to 1.5
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 0.3
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 9.0 to 11
0
Titanium (Ti), % 0
0.6 to 0.9
Zinc (Zn), % 1.0 to 3.0
0
Residuals, % 0 to 0.3
0