MakeItFrom.com
Menu (ESC)

C90500 Gun Metal vs. S82031 Stainless Steel

C90500 gun metal belongs to the copper alloys classification, while S82031 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C90500 gun metal and the bottom bar is S82031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 20
39
Fatigue Strength, MPa 90
490
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 320
780
Tensile Strength: Yield (Proof), MPa 160
570

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 1000
1430
Melting Onset (Solidus), °C 850
1390
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 75
15
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 35
13
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 3.6
2.8
Embodied Energy, MJ/kg 59
39
Embodied Water, L/kg 390
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
280
Resilience: Unit (Modulus of Resilience), kJ/m3 110
820
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
28
Strength to Weight: Bending, points 12
24
Thermal Diffusivity, mm2/s 23
3.9
Thermal Shock Resistance, points 12
22

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 86 to 89
0 to 1.0
Iron (Fe), % 0 to 0.2
68 to 78.3
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 2.5
Molybdenum (Mo), % 0
0.6 to 1.4
Nickel (Ni), % 0 to 1.0
2.0 to 4.0
Nitrogen (N), % 0
0.14 to 0.24
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 0.8
Sulfur (S), % 0 to 0.050
0 to 0.0050
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 1.0 to 3.0
0
Residuals, % 0 to 0.3
0