MakeItFrom.com
Menu (ESC)

C90700 Bronze vs. ACI-ASTM CG8M Steel

C90700 bronze belongs to the copper alloys classification, while ACI-ASTM CG8M steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C90700 bronze and the bottom bar is ACI-ASTM CG8M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90
180
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 12
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 330
550
Tensile Strength: Yield (Proof), MPa 180
300

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 170
1020
Melting Completion (Liquidus), °C 1000
1450
Melting Onset (Solidus), °C 830
1400
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 71
16
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 35
20
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 3.7
4.1
Embodied Energy, MJ/kg 60
56
Embodied Water, L/kg 390
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
210
Resilience: Unit (Modulus of Resilience), kJ/m3 150
220
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
19
Strength to Weight: Bending, points 12
19
Thermal Diffusivity, mm2/s 22
4.3
Thermal Shock Resistance, points 12
12

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 88 to 90
0
Iron (Fe), % 0 to 0.15
58.8 to 70
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 0.5
9.0 to 13
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.5
Sulfur (S), % 0 to 0.050
0 to 0.040
Tin (Sn), % 10 to 12
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.6
0