MakeItFrom.com
Menu (ESC)

C90700 Bronze vs. N08810 Stainless Steel

C90700 bronze belongs to the copper alloys classification, while N08810 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C90700 bronze and the bottom bar is N08810 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 12
33
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 330
520
Tensile Strength: Yield (Proof), MPa 180
200

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 1000
1400
Melting Onset (Solidus), °C 830
1350
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 71
12
Thermal Expansion, µm/m-K 18
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 10
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 35
30
Density, g/cm3 8.7
8.0
Embodied Carbon, kg CO2/kg material 3.7
5.3
Embodied Energy, MJ/kg 60
76
Embodied Water, L/kg 390
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
140
Resilience: Unit (Modulus of Resilience), kJ/m3 150
100
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 10
18
Strength to Weight: Bending, points 12
18
Thermal Diffusivity, mm2/s 22
3.0
Thermal Shock Resistance, points 12
13

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0.15 to 0.6
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 88 to 90
0 to 0.75
Iron (Fe), % 0 to 0.15
39.5 to 50.7
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0 to 0.5
30 to 35
Phosphorus (P), % 0 to 1.5
0 to 0.045
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 10 to 12
0
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.6
0