MakeItFrom.com
Menu (ESC)

C90800 Bronze vs. 6082 Aluminum

C90800 bronze belongs to the copper alloys classification, while 6082 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C90800 bronze and the bottom bar is 6082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90
40 to 95
Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 13
6.3 to 18
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 330
140 to 340
Tensile Strength: Yield (Proof), MPa 170
85 to 320

Thermal Properties

Latent Heat of Fusion, J/g 190
410
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 990
650
Melting Onset (Solidus), °C 870
580
Specific Heat Capacity, J/kg-K 370
900
Thermal Conductivity, W/m-K 68
160
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
42
Electrical Conductivity: Equal Weight (Specific), % IACS 11
140

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 3.8
8.3
Embodied Energy, MJ/kg 62
150
Embodied Water, L/kg 410
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
19 to 43
Resilience: Unit (Modulus of Resilience), kJ/m3 140
52 to 710
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
50
Strength to Weight: Axial, points 11
14 to 35
Strength to Weight: Bending, points 12
21 to 40
Thermal Diffusivity, mm2/s 21
67
Thermal Shock Resistance, points 12
6.0 to 15

Alloy Composition

Aluminum (Al), % 0 to 0.0050
95.2 to 98.3
Antimony (Sb), % 0 to 0.2
0
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 85.3 to 89
0 to 0.1
Iron (Fe), % 0 to 0.15
0 to 0.5
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0
0.4 to 1.0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.3
0
Silicon (Si), % 0 to 0.0050
0.7 to 1.3
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 11 to 13
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.25
0 to 0.2
Residuals, % 0
0 to 0.15