MakeItFrom.com
Menu (ESC)

C90800 Bronze vs. 7108A Aluminum

C90800 bronze belongs to the copper alloys classification, while 7108A aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C90800 bronze and the bottom bar is 7108A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 13
11 to 13
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 330
350
Tensile Strength: Yield (Proof), MPa 170
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 190
380
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 990
630
Melting Onset (Solidus), °C 870
520
Specific Heat Capacity, J/kg-K 370
870
Thermal Conductivity, W/m-K 68
150
Thermal Expansion, µm/m-K 18
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
36
Electrical Conductivity: Equal Weight (Specific), % IACS 11
110

Otherwise Unclassified Properties

Base Metal Price, % relative 36
10
Density, g/cm3 8.7
2.9
Embodied Carbon, kg CO2/kg material 3.8
8.3
Embodied Energy, MJ/kg 62
150
Embodied Water, L/kg 410
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
38 to 44
Resilience: Unit (Modulus of Resilience), kJ/m3 140
610 to 640
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
47
Strength to Weight: Axial, points 11
33 to 34
Strength to Weight: Bending, points 12
38
Thermal Diffusivity, mm2/s 21
59
Thermal Shock Resistance, points 12
15 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.0050
91.6 to 94.4
Antimony (Sb), % 0 to 0.2
0
Chromium (Cr), % 0
0 to 0.040
Copper (Cu), % 85.3 to 89
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.15
0 to 0.3
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0
0.7 to 1.5
Manganese (Mn), % 0
0 to 0.050
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.3
0
Silicon (Si), % 0 to 0.0050
0 to 0.2
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 11 to 13
0
Titanium (Ti), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.25
4.8 to 5.8
Zirconium (Zr), % 0
0.15 to 0.25
Residuals, % 0
0 to 0.15