MakeItFrom.com
Menu (ESC)

C90900 Bronze vs. ACI-ASTM CH10 Steel

C90900 bronze belongs to the copper alloys classification, while ACI-ASTM CH10 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C90900 bronze and the bottom bar is ACI-ASTM CH10 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90
160
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 15
34
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 280
540
Tensile Strength: Yield (Proof), MPa 140
230

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 980
1410
Melting Onset (Solidus), °C 820
1370
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 65
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
20
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.9
3.7
Embodied Energy, MJ/kg 64
53
Embodied Water, L/kg 410
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
150
Resilience: Unit (Modulus of Resilience), kJ/m3 89
140
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.8
19
Strength to Weight: Bending, points 11
19
Thermal Diffusivity, mm2/s 21
3.9
Thermal Shock Resistance, points 10
12

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
22 to 26
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.15
54.8 to 66
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.5
12 to 15
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 2.0
Sulfur (S), % 0 to 0.050
0 to 0.040
Tin (Sn), % 12 to 14
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.6
0