MakeItFrom.com
Menu (ESC)

C90900 Bronze vs. EN 1.4474 Stainless Steel

C90900 bronze belongs to the copper alloys classification, while EN 1.4474 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C90900 bronze and the bottom bar is EN 1.4474 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 15
23
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 40
80
Tensile Strength: Ultimate (UTS), MPa 280
670
Tensile Strength: Yield (Proof), MPa 140
480

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 980
1430
Melting Onset (Solidus), °C 820
1390
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 65
17
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
17
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 3.9
3.4
Embodied Energy, MJ/kg 64
48
Embodied Water, L/kg 410
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
140
Resilience: Unit (Modulus of Resilience), kJ/m3 89
560
Stiffness to Weight: Axial, points 6.8
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.8
24
Strength to Weight: Bending, points 11
22
Thermal Diffusivity, mm2/s 21
4.6
Thermal Shock Resistance, points 10
18

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
25 to 27
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.15
61.2 to 69.1
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
1.3 to 2.0
Nickel (Ni), % 0 to 0.5
4.5 to 6.5
Nitrogen (N), % 0
0.12 to 0.2
Phosphorus (P), % 0 to 0.050
0 to 0.035
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.025
Tin (Sn), % 12 to 14
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.6
0