MakeItFrom.com
Menu (ESC)

C90900 Bronze vs. EN 1.5113 Steel

C90900 bronze belongs to the copper alloys classification, while EN 1.5113 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C90900 bronze and the bottom bar is EN 1.5113 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90
170 to 270
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 15
11 to 18
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 280
580 to 900
Tensile Strength: Yield (Proof), MPa 140
320 to 770

Thermal Properties

Latent Heat of Fusion, J/g 190
260
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 980
1450
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 65
52
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
2.0
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.9
1.4
Embodied Energy, MJ/kg 64
19
Embodied Water, L/kg 410
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
91 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 89
270 to 1570
Stiffness to Weight: Axial, points 6.8
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.8
21 to 32
Strength to Weight: Bending, points 11
20 to 27
Thermal Diffusivity, mm2/s 21
14
Thermal Shock Resistance, points 10
17 to 26

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.15
97 to 97.5
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0
1.6 to 1.8
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.050
0 to 0.025
Silicon (Si), % 0 to 0.0050
0.9 to 1.1
Sulfur (S), % 0 to 0.050
0 to 0.025
Tin (Sn), % 12 to 14
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.6
0