MakeItFrom.com
Menu (ESC)

C90900 Bronze vs. SAE-AISI 1548 Steel

C90900 bronze belongs to the copper alloys classification, while SAE-AISI 1548 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C90900 bronze and the bottom bar is SAE-AISI 1548 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90
220 to 250
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 15
11 to 16
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 280
730 to 830
Tensile Strength: Yield (Proof), MPa 140
420 to 690

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 820
1420
Specific Heat Capacity, J/kg-K 360
470
Thermal Conductivity, W/m-K 65
51
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.9
1.4
Embodied Energy, MJ/kg 64
19
Embodied Water, L/kg 410
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
79 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 89
470 to 1280
Stiffness to Weight: Axial, points 6.8
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.8
26 to 30
Strength to Weight: Bending, points 11
23 to 25
Thermal Diffusivity, mm2/s 21
14
Thermal Shock Resistance, points 10
23 to 27

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0.44 to 0.52
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.15
98 to 98.5
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0
1.1 to 1.4
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0 to 0.050
Tin (Sn), % 12 to 14
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.6
0