MakeItFrom.com
Menu (ESC)

C90900 Bronze vs. S20432 Stainless Steel

C90900 bronze belongs to the copper alloys classification, while S20432 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C90900 bronze and the bottom bar is S20432 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90
170
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 15
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 280
580
Tensile Strength: Yield (Proof), MPa 140
230

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 160
900
Melting Completion (Liquidus), °C 980
1410
Melting Onset (Solidus), °C 820
1370
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 65
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 36
13
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.9
2.7
Embodied Energy, MJ/kg 64
38
Embodied Water, L/kg 410
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
210
Resilience: Unit (Modulus of Resilience), kJ/m3 89
140
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.8
21
Strength to Weight: Bending, points 11
20
Thermal Diffusivity, mm2/s 21
4.0
Thermal Shock Resistance, points 10
13

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 86 to 89
2.0 to 3.0
Iron (Fe), % 0 to 0.15
66.7 to 74
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0
3.0 to 5.0
Nickel (Ni), % 0 to 0.5
4.0 to 6.0
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0 to 0.050
0 to 0.045
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 12 to 14
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.6
0