MakeItFrom.com
Menu (ESC)

C91000 Bronze vs. 514.0 Aluminum

C91000 bronze belongs to the copper alloys classification, while 514.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C91000 bronze and the bottom bar is 514.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
50
Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 7.0
7.3
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 39
25
Tensile Strength: Ultimate (UTS), MPa 230
180
Tensile Strength: Yield (Proof), MPa 150
74

Thermal Properties

Latent Heat of Fusion, J/g 180
400
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 960
640
Melting Onset (Solidus), °C 820
610
Specific Heat Capacity, J/kg-K 360
900
Thermal Conductivity, W/m-K 64
140
Thermal Expansion, µm/m-K 18
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
35
Electrical Conductivity: Equal Weight (Specific), % IACS 9.4
120

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 8.6
2.7
Embodied Carbon, kg CO2/kg material 4.1
8.9
Embodied Energy, MJ/kg 67
150
Embodied Water, L/kg 420
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
11
Resilience: Unit (Modulus of Resilience), kJ/m3 100
41
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
51
Strength to Weight: Axial, points 7.5
19
Strength to Weight: Bending, points 9.7
26
Thermal Diffusivity, mm2/s 20
57
Thermal Shock Resistance, points 8.8
7.9

Alloy Composition

Aluminum (Al), % 0 to 0.0050
93.6 to 96.5
Antimony (Sb), % 0 to 0.2
0
Copper (Cu), % 84 to 86
0 to 0.15
Iron (Fe), % 0 to 0.1
0 to 0.5
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0
0 to 0.35
Nickel (Ni), % 0 to 0.8
0
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0 to 0.35
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 14 to 16
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 1.5
0 to 0.15
Residuals, % 0
0 to 0.15