MakeItFrom.com
Menu (ESC)

C91000 Bronze vs. N08926 Stainless Steel

C91000 bronze belongs to the copper alloys classification, while N08926 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C91000 bronze and the bottom bar is N08926 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 7.0
40
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 39
80
Tensile Strength: Ultimate (UTS), MPa 230
740
Tensile Strength: Yield (Proof), MPa 150
330

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 960
1460
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 360
460
Thermal Conductivity, W/m-K 64
12
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 9.4
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 37
33
Density, g/cm3 8.6
8.1
Embodied Carbon, kg CO2/kg material 4.1
6.2
Embodied Energy, MJ/kg 67
84
Embodied Water, L/kg 420
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
240
Resilience: Unit (Modulus of Resilience), kJ/m3 100
270
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.5
25
Strength to Weight: Bending, points 9.7
22
Thermal Diffusivity, mm2/s 20
3.2
Thermal Shock Resistance, points 8.8
16

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 84 to 86
0.5 to 1.5
Iron (Fe), % 0 to 0.1
41.7 to 50.4
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0 to 0.8
24 to 26
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0 to 1.5
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.010
Tin (Sn), % 14 to 16
0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.6
0