MakeItFrom.com
Menu (ESC)

C91000 Bronze vs. S17400 Stainless Steel

C91000 bronze belongs to the copper alloys classification, while S17400 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C91000 bronze and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
280 to 440
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 7.0
11 to 21
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 39
75
Tensile Strength: Ultimate (UTS), MPa 230
910 to 1390
Tensile Strength: Yield (Proof), MPa 150
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 180
280
Maximum Temperature: Mechanical, °C 160
850
Melting Completion (Liquidus), °C 960
1440
Melting Onset (Solidus), °C 820
1400
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 64
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 9.4
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 37
14
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 4.1
2.7
Embodied Energy, MJ/kg 67
39
Embodied Water, L/kg 420
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 100
880 to 4060
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.5
32 to 49
Strength to Weight: Bending, points 9.7
27 to 35
Thermal Diffusivity, mm2/s 20
4.5
Thermal Shock Resistance, points 8.8
30 to 46

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 84 to 86
3.0 to 5.0
Iron (Fe), % 0 to 0.1
70.4 to 78.9
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.8
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 14 to 16
0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.6
0