MakeItFrom.com
Menu (ESC)

C91100 Bronze vs. CC499K Bronze

Both C91100 bronze and CC499K bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 89% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C91100 bronze and the bottom bar is CC499K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 2.0
13
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 39
41
Tensile Strength: Ultimate (UTS), MPa 240
260
Tensile Strength: Yield (Proof), MPa 170
120

Thermal Properties

Latent Heat of Fusion, J/g 180
190
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 950
1000
Melting Onset (Solidus), °C 820
920
Specific Heat Capacity, J/kg-K 360
370
Thermal Conductivity, W/m-K 63
73
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
12
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
12

Otherwise Unclassified Properties

Base Metal Price, % relative 38
32
Density, g/cm3 8.7
8.8
Embodied Carbon, kg CO2/kg material 4.2
3.1
Embodied Energy, MJ/kg 69
51
Embodied Water, L/kg 440
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4
27
Resilience: Unit (Modulus of Resilience), kJ/m3 140
65
Stiffness to Weight: Axial, points 6.7
6.9
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 7.7
8.1
Strength to Weight: Bending, points 9.9
10
Thermal Diffusivity, mm2/s 20
22
Thermal Shock Resistance, points 9.1
9.2

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0 to 0.010
Antimony (Sb), % 0 to 0.2
0 to 0.1
Arsenic (As), % 0
0 to 0.030
Bismuth (Bi), % 0
0 to 0.020
Cadmium (Cd), % 0
0 to 0.020
Chromium (Cr), % 0
0 to 0.020
Copper (Cu), % 82 to 85
84 to 88
Iron (Fe), % 0 to 0.25
0 to 0.3
Lead (Pb), % 0 to 0.25
0 to 3.0
Nickel (Ni), % 0 to 0.5
0 to 0.6
Phosphorus (P), % 0 to 1.0
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 0.010
Sulfur (S), % 0 to 0.050
0 to 0.040
Tin (Sn), % 15 to 17
4.0 to 6.0
Zinc (Zn), % 0 to 0.25
4.0 to 6.0