MakeItFrom.com
Menu (ESC)

C91600 Bronze vs. 4047 Aluminum

C91600 bronze belongs to the copper alloys classification, while 4047 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C91600 bronze and the bottom bar is 4047 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
72
Elongation at Break, % 11
3.4
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 41
27
Tensile Strength: Ultimate (UTS), MPa 310
120
Tensile Strength: Yield (Proof), MPa 160
64

Thermal Properties

Latent Heat of Fusion, J/g 190
570
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 1030
580
Melting Onset (Solidus), °C 860
580
Specific Heat Capacity, J/kg-K 370
900
Thermal Conductivity, W/m-K 71
130
Thermal Expansion, µm/m-K 18
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
33
Electrical Conductivity: Equal Weight (Specific), % IACS 10
120

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 8.8
2.5
Embodied Carbon, kg CO2/kg material 3.7
7.7
Embodied Energy, MJ/kg 61
140
Embodied Water, L/kg 390
1050

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
3.5
Resilience: Unit (Modulus of Resilience), kJ/m3 120
28
Stiffness to Weight: Axial, points 7.0
16
Stiffness to Weight: Bending, points 18
55
Strength to Weight: Axial, points 9.9
13
Strength to Weight: Bending, points 12
21
Thermal Diffusivity, mm2/s 22
59
Thermal Shock Resistance, points 11
5.6

Alloy Composition

Aluminum (Al), % 0 to 0.0050
85.3 to 89
Antimony (Sb), % 0 to 0.2
0
Copper (Cu), % 85.9 to 89.1
0 to 0.3
Iron (Fe), % 0 to 0.2
0 to 0.8
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 1.2 to 2.0
0
Phosphorus (P), % 0 to 0.3
0
Silicon (Si), % 0 to 0.0050
11 to 13
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 9.7 to 10.8
0
Zinc (Zn), % 0 to 0.25
0 to 0.2
Residuals, % 0
0 to 0.15