MakeItFrom.com
Menu (ESC)

C91600 Bronze vs. ASTM A387 Grade 12 Steel

C91600 bronze belongs to the copper alloys classification, while ASTM A387 grade 12 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C91600 bronze and the bottom bar is ASTM A387 grade 12 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 84
140 to 160
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
25
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 310
470 to 520
Tensile Strength: Yield (Proof), MPa 160
260 to 310

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 1030
1470
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 71
44
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 10
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 36
2.8
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.7
1.6
Embodied Energy, MJ/kg 61
21
Embodied Water, L/kg 390
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
98 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 120
180 to 250
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.9
16 to 18
Strength to Weight: Bending, points 12
17 to 18
Thermal Diffusivity, mm2/s 22
12
Thermal Shock Resistance, points 11
14 to 15

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0.050 to 0.17
Chromium (Cr), % 0
0.8 to 1.2
Copper (Cu), % 85.9 to 89.1
0
Iron (Fe), % 0 to 0.2
97 to 98.2
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0
0.4 to 0.65
Molybdenum (Mo), % 0
0.45 to 0.6
Nickel (Ni), % 1.2 to 2.0
0
Phosphorus (P), % 0 to 0.3
0 to 0.025
Silicon (Si), % 0 to 0.0050
0.15 to 0.4
Sulfur (S), % 0 to 0.050
0 to 0.025
Tin (Sn), % 9.7 to 10.8
0
Zinc (Zn), % 0 to 0.25
0