MakeItFrom.com
Menu (ESC)

C91600 Bronze vs. AWS ER120S-1

C91600 bronze belongs to the copper alloys classification, while AWS ER120S-1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C91600 bronze and the bottom bar is AWS ER120S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 310
930
Tensile Strength: Yield (Proof), MPa 160
830

Thermal Properties

Latent Heat of Fusion, J/g 190
260
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 860
1410
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 71
46
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 10
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
4.2
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.7
1.9
Embodied Energy, MJ/kg 61
25
Embodied Water, L/kg 390
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
150
Resilience: Unit (Modulus of Resilience), kJ/m3 120
1850
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.9
33
Strength to Weight: Bending, points 12
27
Thermal Diffusivity, mm2/s 22
13
Thermal Shock Resistance, points 11
27

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0 to 0.1
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
0 to 0.6
Copper (Cu), % 85.9 to 89.1
0 to 0.25
Iron (Fe), % 0 to 0.2
92.4 to 96.1
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0
1.4 to 1.8
Molybdenum (Mo), % 0
0.3 to 0.65
Nickel (Ni), % 1.2 to 2.0
2.0 to 2.8
Phosphorus (P), % 0 to 0.3
0 to 0.010
Silicon (Si), % 0 to 0.0050
0.25 to 0.6
Sulfur (S), % 0 to 0.050
0 to 0.010
Tin (Sn), % 9.7 to 10.8
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5