MakeItFrom.com
Menu (ESC)

C91600 Bronze vs. B443.0 Aluminum

C91600 bronze belongs to the copper alloys classification, while B443.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C91600 bronze and the bottom bar is B443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 84
43
Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 11
4.9
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 41
26
Tensile Strength: Ultimate (UTS), MPa 310
150
Tensile Strength: Yield (Proof), MPa 160
50

Thermal Properties

Latent Heat of Fusion, J/g 190
470
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 1030
620
Melting Onset (Solidus), °C 860
600
Specific Heat Capacity, J/kg-K 370
900
Thermal Conductivity, W/m-K 71
150
Thermal Expansion, µm/m-K 18
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
38
Electrical Conductivity: Equal Weight (Specific), % IACS 10
130

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 8.8
2.7
Embodied Carbon, kg CO2/kg material 3.7
8.0
Embodied Energy, MJ/kg 61
150
Embodied Water, L/kg 390
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 120
18
Stiffness to Weight: Axial, points 7.0
15
Stiffness to Weight: Bending, points 18
52
Strength to Weight: Axial, points 9.9
15
Strength to Weight: Bending, points 12
23
Thermal Diffusivity, mm2/s 22
61
Thermal Shock Resistance, points 11
6.8

Alloy Composition

Aluminum (Al), % 0 to 0.0050
91.9 to 95.5
Antimony (Sb), % 0 to 0.2
0
Copper (Cu), % 85.9 to 89.1
0 to 0.15
Iron (Fe), % 0 to 0.2
0 to 0.8
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 0.35
Nickel (Ni), % 1.2 to 2.0
0
Phosphorus (P), % 0 to 0.3
0
Silicon (Si), % 0 to 0.0050
4.5 to 6.0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 9.7 to 10.8
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 0.35
Residuals, % 0
0 to 0.15