MakeItFrom.com
Menu (ESC)

C91700 Bronze vs. 4007 Aluminum

C91700 bronze belongs to the copper alloys classification, while 4007 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C91700 bronze and the bottom bar is 4007 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90
32 to 44
Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 13
5.1 to 23
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 41
27
Tensile Strength: Ultimate (UTS), MPa 330
130 to 160
Tensile Strength: Yield (Proof), MPa 170
50 to 120

Thermal Properties

Latent Heat of Fusion, J/g 190
410
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 1020
650
Melting Onset (Solidus), °C 850
590
Specific Heat Capacity, J/kg-K 370
890
Thermal Conductivity, W/m-K 71
170
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
42
Electrical Conductivity: Equal Weight (Specific), % IACS 10
140

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 8.7
2.8
Embodied Carbon, kg CO2/kg material 3.9
8.1
Embodied Energy, MJ/kg 63
150
Embodied Water, L/kg 400
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
7.4 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 140
18 to 110
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
49
Strength to Weight: Axial, points 11
12 to 15
Strength to Weight: Bending, points 12
20 to 23
Thermal Diffusivity, mm2/s 22
67
Thermal Shock Resistance, points 12
5.5 to 6.7

Alloy Composition

Aluminum (Al), % 0 to 0.0050
94.1 to 97.6
Antimony (Sb), % 0 to 0.2
0
Chromium (Cr), % 0
0.050 to 0.25
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 84.2 to 87.5
0 to 0.2
Iron (Fe), % 0 to 0.2
0.4 to 1.0
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0
0 to 0.2
Manganese (Mn), % 0
0.8 to 1.5
Nickel (Ni), % 1.2 to 2.0
0.15 to 0.7
Phosphorus (P), % 0 to 0.3
0
Silicon (Si), % 0 to 0.0050
1.0 to 1.7
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 11.3 to 12.5
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.25
0 to 0.1
Residuals, % 0
0 to 0.15