MakeItFrom.com
Menu (ESC)

C92200 Bronze vs. EN 1.4482 Stainless Steel

C92200 bronze belongs to the copper alloys classification, while EN 1.4482 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C92200 bronze and the bottom bar is EN 1.4482 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
34
Fatigue Strength, MPa 76
420 to 450
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
78
Tensile Strength: Ultimate (UTS), MPa 280
770 to 800
Tensile Strength: Yield (Proof), MPa 140
530 to 570

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 990
1420
Melting Onset (Solidus), °C 830
1370
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 70
15
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 32
12
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 3.2
2.7
Embodied Energy, MJ/kg 52
38
Embodied Water, L/kg 360
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
230 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 87
690 to 820
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.9
28 to 29
Strength to Weight: Bending, points 11
24 to 25
Thermal Diffusivity, mm2/s 21
4.0
Thermal Shock Resistance, points 9.9
21 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19.5 to 21.5
Copper (Cu), % 86 to 90
0 to 1.0
Iron (Fe), % 0 to 0.25
66.1 to 74.9
Lead (Pb), % 1.0 to 2.0
0
Manganese (Mn), % 0
4.0 to 6.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0 to 1.0
1.5 to 3.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0 to 1.5
0 to 0.035
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 5.5 to 6.5
0
Zinc (Zn), % 3.0 to 5.0
0
Residuals, % 0 to 0.7
0