MakeItFrom.com
Menu (ESC)

C92200 Bronze vs. EN 1.5501 Steel

C92200 bronze belongs to the copper alloys classification, while EN 1.5501 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C92200 bronze and the bottom bar is EN 1.5501 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
12 to 17
Fatigue Strength, MPa 76
180 to 270
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 280
390 to 510
Tensile Strength: Yield (Proof), MPa 140
260 to 420

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 990
1460
Melting Onset (Solidus), °C 830
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 70
52
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 14
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 32
1.8
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 3.2
1.4
Embodied Energy, MJ/kg 52
18
Embodied Water, L/kg 360
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
40 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 87
190 to 460
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.9
14 to 18
Strength to Weight: Bending, points 11
15 to 18
Thermal Diffusivity, mm2/s 21
14
Thermal Shock Resistance, points 9.9
11 to 15

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.13 to 0.16
Copper (Cu), % 86 to 90
0 to 0.25
Iron (Fe), % 0 to 0.25
98.4 to 99.269
Lead (Pb), % 1.0 to 2.0
0
Manganese (Mn), % 0
0.6 to 0.8
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0 to 0.025
Silicon (Si), % 0 to 0.0050
0 to 0.3
Sulfur (S), % 0 to 0.050
0 to 0.025
Tin (Sn), % 5.5 to 6.5
0
Zinc (Zn), % 3.0 to 5.0
0
Residuals, % 0 to 0.7
0