MakeItFrom.com
Menu (ESC)

C92200 Bronze vs. Nickel 333

C92200 bronze belongs to the copper alloys classification, while nickel 333 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C92200 bronze and the bottom bar is nickel 333.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 25
34
Fatigue Strength, MPa 76
200
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 65
85
Shear Modulus, GPa 41
81
Tensile Strength: Ultimate (UTS), MPa 280
630
Tensile Strength: Yield (Proof), MPa 140
270

Thermal Properties

Latent Heat of Fusion, J/g 190
320
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 990
1460
Melting Onset (Solidus), °C 830
1410
Specific Heat Capacity, J/kg-K 370
450
Thermal Conductivity, W/m-K 70
11
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 14
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 32
55
Density, g/cm3 8.7
8.5
Embodied Carbon, kg CO2/kg material 3.2
8.5
Embodied Energy, MJ/kg 52
120
Embodied Water, L/kg 360
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
170
Resilience: Unit (Modulus of Resilience), kJ/m3 87
180
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 8.9
21
Strength to Weight: Bending, points 11
19
Thermal Diffusivity, mm2/s 21
2.9
Thermal Shock Resistance, points 9.9
16

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
24 to 27
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 86 to 90
0
Iron (Fe), % 0 to 0.25
9.3 to 24.5
Lead (Pb), % 1.0 to 2.0
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0 to 1.0
44 to 48
Phosphorus (P), % 0 to 1.5
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 1.5
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 5.5 to 6.5
0
Tungsten (W), % 0
2.5 to 4.0
Zinc (Zn), % 3.0 to 5.0
0
Residuals, % 0 to 0.7
0