MakeItFrom.com
Menu (ESC)

C92200 Bronze vs. SAE-AISI 5140 Steel

C92200 bronze belongs to the copper alloys classification, while SAE-AISI 5140 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C92200 bronze and the bottom bar is SAE-AISI 5140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
12 to 29
Fatigue Strength, MPa 76
220 to 570
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 280
560 to 970
Tensile Strength: Yield (Proof), MPa 140
290 to 840

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 990
1460
Melting Onset (Solidus), °C 830
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 70
45
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 14
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 32
2.1
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.2
1.4
Embodied Energy, MJ/kg 52
19
Embodied Water, L/kg 360
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
76 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 87
220 to 1880
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.9
20 to 34
Strength to Weight: Bending, points 11
19 to 28
Thermal Diffusivity, mm2/s 21
12
Thermal Shock Resistance, points 9.9
16 to 29

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 86 to 90
0
Iron (Fe), % 0 to 0.25
97.3 to 98.1
Lead (Pb), % 1.0 to 2.0
0
Manganese (Mn), % 0
0.7 to 0.9
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0 to 0.035
Silicon (Si), % 0 to 0.0050
0.15 to 0.35
Sulfur (S), % 0 to 0.050
0 to 0.040
Tin (Sn), % 5.5 to 6.5
0
Zinc (Zn), % 3.0 to 5.0
0
Residuals, % 0 to 0.7
0