MakeItFrom.com
Menu (ESC)

C92200 Bronze vs. C42200 Brass

Both C92200 bronze and C42200 brass are copper alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C92200 bronze and the bottom bar is C42200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 25
2.0 to 46
Poisson's Ratio 0.34
0.33
Rockwell B Hardness 65
56 to 87
Shear Modulus, GPa 41
42
Tensile Strength: Ultimate (UTS), MPa 280
300 to 610
Tensile Strength: Yield (Proof), MPa 140
100 to 570

Thermal Properties

Latent Heat of Fusion, J/g 190
200
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 990
1040
Melting Onset (Solidus), °C 830
1020
Specific Heat Capacity, J/kg-K 370
380
Thermal Conductivity, W/m-K 70
130
Thermal Expansion, µm/m-K 19
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
31
Electrical Conductivity: Equal Weight (Specific), % IACS 14
32

Otherwise Unclassified Properties

Base Metal Price, % relative 32
29
Density, g/cm3 8.7
8.6
Embodied Carbon, kg CO2/kg material 3.2
2.7
Embodied Energy, MJ/kg 52
44
Embodied Water, L/kg 360
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 87
49 to 1460
Stiffness to Weight: Axial, points 6.9
7.2
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 8.9
9.5 to 19
Strength to Weight: Bending, points 11
11 to 18
Thermal Diffusivity, mm2/s 21
39
Thermal Shock Resistance, points 9.9
10 to 21

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Copper (Cu), % 86 to 90
86 to 89
Iron (Fe), % 0 to 0.25
0 to 0.050
Lead (Pb), % 1.0 to 2.0
0 to 0.050
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0 to 0.35
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 5.5 to 6.5
0.8 to 1.4
Zinc (Zn), % 3.0 to 5.0
8.7 to 13.2
Residuals, % 0
0 to 0.5