MakeItFrom.com
Menu (ESC)

C92200 Bronze vs. S30815 Stainless Steel

C92200 bronze belongs to the copper alloys classification, while S30815 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C92200 bronze and the bottom bar is S30815 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
45
Fatigue Strength, MPa 76
320
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 65
82
Shear Modulus, GPa 41
77
Tensile Strength: Ultimate (UTS), MPa 280
680
Tensile Strength: Yield (Proof), MPa 140
350

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 170
1020
Melting Completion (Liquidus), °C 990
1400
Melting Onset (Solidus), °C 830
1360
Specific Heat Capacity, J/kg-K 370
490
Thermal Conductivity, W/m-K 70
15
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 32
17
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 3.2
3.3
Embodied Energy, MJ/kg 52
47
Embodied Water, L/kg 360
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
260
Resilience: Unit (Modulus of Resilience), kJ/m3 87
310
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.9
25
Strength to Weight: Bending, points 11
22
Thermal Diffusivity, mm2/s 21
4.0
Thermal Shock Resistance, points 9.9
15

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.050 to 0.1
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 86 to 90
0
Iron (Fe), % 0 to 0.25
62.8 to 68.4
Lead (Pb), % 1.0 to 2.0
0
Manganese (Mn), % 0
0 to 0.8
Nickel (Ni), % 0 to 1.0
10 to 12
Nitrogen (N), % 0
0.14 to 0.2
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
1.4 to 2.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 5.5 to 6.5
0
Zinc (Zn), % 3.0 to 5.0
0
Residuals, % 0 to 0.7
0