MakeItFrom.com
Menu (ESC)

C92300 Bronze vs. AISI 384 Stainless Steel

C92300 bronze belongs to the copper alloys classification, while AISI 384 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C92300 bronze and the bottom bar is AISI 384 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 300
480

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 170
910
Melting Completion (Liquidus), °C 1000
1420
Melting Onset (Solidus), °C 850
1380
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 75
16
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 33
20
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 3.4
3.7
Embodied Energy, MJ/kg 56
52
Embodied Water, L/kg 370
150

Common Calculations

Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.5
17
Strength to Weight: Bending, points 11
17
Thermal Diffusivity, mm2/s 23
4.3
Thermal Shock Resistance, points 11
11

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 85 to 89
0
Iron (Fe), % 0 to 0.25
60.9 to 68
Lead (Pb), % 0.3 to 1.0
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 1.0
17 to 19
Phosphorus (P), % 0 to 1.5
0 to 0.045
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 7.5 to 9.0
0
Zinc (Zn), % 2.5 to 5.0
0
Residuals, % 0 to 0.7
0