MakeItFrom.com
Menu (ESC)

C92300 Bronze vs. ASTM A182 Grade F22V

C92300 bronze belongs to the copper alloys classification, while ASTM A182 grade F22V belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C92300 bronze and the bottom bar is ASTM A182 grade F22V.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 19
21
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
74
Tensile Strength: Ultimate (UTS), MPa 300
670
Tensile Strength: Yield (Proof), MPa 140
460

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
460
Melting Completion (Liquidus), °C 1000
1470
Melting Onset (Solidus), °C 850
1430
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 75
39
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 33
4.2
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 3.4
2.5
Embodied Energy, MJ/kg 56
35
Embodied Water, L/kg 370
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
120
Resilience: Unit (Modulus of Resilience), kJ/m3 86
570
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.5
24
Strength to Weight: Bending, points 11
22
Thermal Diffusivity, mm2/s 23
11
Thermal Shock Resistance, points 11
19

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Boron (B), % 0
0 to 0.0020
Calcium (Ca), % 0
0 to 0.015
Carbon (C), % 0
0.11 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 85 to 89
0 to 0.2
Iron (Fe), % 0 to 0.25
94.6 to 96.4
Lead (Pb), % 0.3 to 1.0
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 1.0
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Phosphorus (P), % 0 to 1.5
0 to 0.015
Silicon (Si), % 0 to 0.0050
0 to 0.1
Sulfur (S), % 0 to 0.050
0 to 0.010
Tin (Sn), % 7.5 to 9.0
0
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 2.5 to 5.0
0
Residuals, % 0 to 0.7
0