MakeItFrom.com
Menu (ESC)

C92300 Bronze vs. EN 1.4424 Stainless Steel

C92300 bronze belongs to the copper alloys classification, while EN 1.4424 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C92300 bronze and the bottom bar is EN 1.4424 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 19
28
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 300
800
Tensile Strength: Yield (Proof), MPa 140
480 to 500

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 1000
1430
Melting Onset (Solidus), °C 850
1390
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 75
13
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 33
15
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 3.4
3.4
Embodied Energy, MJ/kg 56
46
Embodied Water, L/kg 370
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
190 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 86
580 to 640
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.5
29
Strength to Weight: Bending, points 11
25
Thermal Diffusivity, mm2/s 23
3.5
Thermal Shock Resistance, points 11
23

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 19
Copper (Cu), % 85 to 89
0
Iron (Fe), % 0 to 0.25
68.6 to 72.4
Lead (Pb), % 0.3 to 1.0
0
Manganese (Mn), % 0
1.2 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0 to 1.0
4.5 to 5.2
Nitrogen (N), % 0
0.050 to 0.1
Phosphorus (P), % 0 to 1.5
0 to 0.035
Silicon (Si), % 0 to 0.0050
1.4 to 2.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 7.5 to 9.0
0
Zinc (Zn), % 2.5 to 5.0
0
Residuals, % 0 to 0.7
0