MakeItFrom.com
Menu (ESC)

C92300 Bronze vs. EN 1.4539 Stainless Steel

C92300 bronze belongs to the copper alloys classification, while EN 1.4539 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C92300 bronze and the bottom bar is EN 1.4539 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 19
38
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 300
630
Tensile Strength: Yield (Proof), MPa 140
260

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 1000
1440
Melting Onset (Solidus), °C 850
1390
Specific Heat Capacity, J/kg-K 370
460
Thermal Conductivity, W/m-K 75
12
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 12
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 33
31
Density, g/cm3 8.7
8.1
Embodied Carbon, kg CO2/kg material 3.4
5.7
Embodied Energy, MJ/kg 56
78
Embodied Water, L/kg 370
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
190
Resilience: Unit (Modulus of Resilience), kJ/m3 86
160
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.5
22
Strength to Weight: Bending, points 11
20
Thermal Diffusivity, mm2/s 23
3.2
Thermal Shock Resistance, points 11
14

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 85 to 89
1.2 to 2.0
Iron (Fe), % 0 to 0.25
43.1 to 51.8
Lead (Pb), % 0.3 to 1.0
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 1.0
24 to 26
Nitrogen (N), % 0
0 to 0.15
Phosphorus (P), % 0 to 1.5
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 0.7
Sulfur (S), % 0 to 0.050
0 to 0.010
Tin (Sn), % 7.5 to 9.0
0
Zinc (Zn), % 2.5 to 5.0
0
Residuals, % 0 to 0.7
0