MakeItFrom.com
Menu (ESC)

C92300 Bronze vs. EN 1.6553 Steel

C92300 bronze belongs to the copper alloys classification, while EN 1.6553 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C92300 bronze and the bottom bar is EN 1.6553 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 19
19 to 21
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 300
710 to 800
Tensile Strength: Yield (Proof), MPa 140
470 to 670

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 1000
1460
Melting Onset (Solidus), °C 850
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 75
39
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 33
2.7
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.4
1.6
Embodied Energy, MJ/kg 56
21
Embodied Water, L/kg 370
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
130 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 86
600 to 1190
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.5
25 to 28
Strength to Weight: Bending, points 11
23 to 24
Thermal Diffusivity, mm2/s 23
10
Thermal Shock Resistance, points 11
21 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.23 to 0.28
Chromium (Cr), % 0
0.4 to 0.8
Copper (Cu), % 85 to 89
0 to 0.3
Iron (Fe), % 0 to 0.25
95.6 to 98.2
Lead (Pb), % 0.3 to 1.0
0
Manganese (Mn), % 0
0.6 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.3
Nickel (Ni), % 0 to 1.0
0.4 to 0.8
Phosphorus (P), % 0 to 1.5
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 0.8
Sulfur (S), % 0 to 0.050
0 to 0.025
Tin (Sn), % 7.5 to 9.0
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 2.5 to 5.0
0
Residuals, % 0 to 0.7
0