MakeItFrom.com
Menu (ESC)

C92300 Bronze vs. EN 1.8516 Steel

C92300 bronze belongs to the copper alloys classification, while EN 1.8516 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C92300 bronze and the bottom bar is EN 1.8516 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 19
11
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
74
Tensile Strength: Ultimate (UTS), MPa 300
1100
Tensile Strength: Yield (Proof), MPa 140
910

Thermal Properties

Latent Heat of Fusion, J/g 190
260
Maximum Temperature: Mechanical, °C 170
470
Melting Completion (Liquidus), °C 1000
1460
Melting Onset (Solidus), °C 850
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 75
39
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 33
3.7
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.4
1.7
Embodied Energy, MJ/kg 56
22
Embodied Water, L/kg 370
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
120
Resilience: Unit (Modulus of Resilience), kJ/m3 86
2190
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.5
39
Strength to Weight: Bending, points 11
30
Thermal Diffusivity, mm2/s 23
10
Thermal Shock Resistance, points 11
32

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.2 to 0.27
Chromium (Cr), % 0
3.0 to 3.5
Copper (Cu), % 85 to 89
0
Iron (Fe), % 0 to 0.25
94.6 to 96.1
Lead (Pb), % 0.3 to 1.0
0
Manganese (Mn), % 0
0.4 to 0.7
Molybdenum (Mo), % 0
0.5 to 0.7
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0 to 0.025
Silicon (Si), % 0 to 0.0050
0 to 0.4
Sulfur (S), % 0 to 0.050
0 to 0.035
Tin (Sn), % 7.5 to 9.0
0
Zinc (Zn), % 2.5 to 5.0
0
Residuals, % 0 to 0.7
0