MakeItFrom.com
Menu (ESC)

C92300 Bronze vs. EN 2.4668 Nickel

C92300 bronze belongs to the copper alloys classification, while EN 2.4668 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C92300 bronze and the bottom bar is EN 2.4668 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 19
14
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
75
Tensile Strength: Ultimate (UTS), MPa 300
1390
Tensile Strength: Yield (Proof), MPa 140
1160

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 1000
1460
Melting Onset (Solidus), °C 850
1410
Specific Heat Capacity, J/kg-K 370
450
Thermal Conductivity, W/m-K 75
13
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 12
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 33
75
Density, g/cm3 8.7
8.3
Embodied Carbon, kg CO2/kg material 3.4
13
Embodied Energy, MJ/kg 56
190
Embodied Water, L/kg 370
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
180
Resilience: Unit (Modulus of Resilience), kJ/m3 86
3490
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 9.5
46
Strength to Weight: Bending, points 11
33
Thermal Diffusivity, mm2/s 23
3.5
Thermal Shock Resistance, points 11
40

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0.3 to 0.7
Antimony (Sb), % 0 to 0.25
0
Boron (B), % 0
0.0020 to 0.0060
Carbon (C), % 0
0.020 to 0.080
Chromium (Cr), % 0
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 85 to 89
0 to 0.3
Iron (Fe), % 0 to 0.25
11.2 to 24.6
Lead (Pb), % 0.3 to 1.0
0
Manganese (Mn), % 0
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0 to 1.0
50 to 55
Niobium (Nb), % 0
4.7 to 5.5
Phosphorus (P), % 0 to 1.5
0 to 0.015
Silicon (Si), % 0 to 0.0050
0 to 0.35
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 7.5 to 9.0
0
Titanium (Ti), % 0
0.6 to 1.2
Zinc (Zn), % 2.5 to 5.0
0
Residuals, % 0 to 0.7
0