MakeItFrom.com
Menu (ESC)

C92300 Bronze vs. N12160 Nickel

C92300 bronze belongs to the copper alloys classification, while N12160 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C92300 bronze and the bottom bar is N12160 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 19
45
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
80
Tensile Strength: Ultimate (UTS), MPa 300
710
Tensile Strength: Yield (Proof), MPa 140
270

Thermal Properties

Latent Heat of Fusion, J/g 190
360
Maximum Temperature: Mechanical, °C 170
1060
Melting Completion (Liquidus), °C 1000
1330
Melting Onset (Solidus), °C 850
1280
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 75
11
Thermal Expansion, µm/m-K 18
13

Otherwise Unclassified Properties

Base Metal Price, % relative 33
90
Density, g/cm3 8.7
8.2
Embodied Carbon, kg CO2/kg material 3.4
8.5
Embodied Energy, MJ/kg 56
120
Embodied Water, L/kg 370
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
260
Resilience: Unit (Modulus of Resilience), kJ/m3 86
180
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.5
24
Strength to Weight: Bending, points 11
22
Thermal Diffusivity, mm2/s 23
2.8
Thermal Shock Resistance, points 11
19

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
26 to 30
Cobalt (Co), % 0
27 to 33
Copper (Cu), % 85 to 89
0
Iron (Fe), % 0 to 0.25
0 to 3.5
Lead (Pb), % 0.3 to 1.0
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0 to 1.0
25 to 44.4
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 1.5
0 to 0.030
Silicon (Si), % 0 to 0.0050
2.4 to 3.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 7.5 to 9.0
0
Titanium (Ti), % 0
0.2 to 0.8
Tungsten (W), % 0
0 to 1.0
Zinc (Zn), % 2.5 to 5.0
0
Residuals, % 0 to 0.7
0