MakeItFrom.com
Menu (ESC)

C92500 Bronze vs. EN 1.0108 Steel

C92500 bronze belongs to the copper alloys classification, while EN 1.0108 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C92500 bronze and the bottom bar is EN 1.0108 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
29
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 310
380
Tensile Strength: Yield (Proof), MPa 190
200

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 870
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 63
50
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 35
2.1
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 3.7
1.5
Embodied Energy, MJ/kg 61
19
Embodied Water, L/kg 390
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
94
Resilience: Unit (Modulus of Resilience), kJ/m3 170
110
Stiffness to Weight: Axial, points 6.8
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.8
13
Strength to Weight: Bending, points 12
15
Thermal Diffusivity, mm2/s 20
13
Thermal Shock Resistance, points 12
12

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0.020 to 0.2
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.13
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 85 to 88
0 to 0.3
Iron (Fe), % 0 to 0.3
97.5 to 99.98
Lead (Pb), % 1.0 to 1.5
0
Manganese (Mn), % 0
0 to 0.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0.8 to 1.5
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Phosphorus (P), % 0 to 1.5
0 to 0.025
Silicon (Si), % 0 to 0.0050
0 to 0.35
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 10 to 12
0
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.7
0