MakeItFrom.com
Menu (ESC)

C92500 Bronze vs. EN 1.0303 Steel

C92500 bronze belongs to the copper alloys classification, while EN 1.0303 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C92500 bronze and the bottom bar is EN 1.0303 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
12 to 25
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 310
290 to 410
Tensile Strength: Yield (Proof), MPa 190
200 to 320

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 980
1470
Melting Onset (Solidus), °C 870
1430
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 63
53
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 12
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 35
1.8
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 3.7
1.4
Embodied Energy, MJ/kg 61
18
Embodied Water, L/kg 390
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
30 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 170
110 to 270
Stiffness to Weight: Axial, points 6.8
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.8
10 to 15
Strength to Weight: Bending, points 12
12 to 16
Thermal Diffusivity, mm2/s 20
14
Thermal Shock Resistance, points 12
9.2 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0.020 to 0.060
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.020 to 0.060
Copper (Cu), % 85 to 88
0
Iron (Fe), % 0 to 0.3
99.335 to 99.71
Lead (Pb), % 1.0 to 1.5
0
Manganese (Mn), % 0
0.25 to 0.4
Nickel (Ni), % 0.8 to 1.5
0
Phosphorus (P), % 0 to 1.5
0 to 0.020
Silicon (Si), % 0 to 0.0050
0 to 0.1
Sulfur (S), % 0 to 0.050
0 to 0.025
Tin (Sn), % 10 to 12
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.7
0