MakeItFrom.com
Menu (ESC)

C92500 Bronze vs. EN 1.4376 Stainless Steel

C92500 bronze belongs to the copper alloys classification, while EN 1.4376 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C92500 bronze and the bottom bar is EN 1.4376 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 310
750
Tensile Strength: Yield (Proof), MPa 190
450

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 170
930
Melting Completion (Liquidus), °C 980
1410
Melting Onset (Solidus), °C 870
1370
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 63
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 35
12
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 3.7
2.6
Embodied Energy, MJ/kg 61
37
Embodied Water, L/kg 390
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
290
Resilience: Unit (Modulus of Resilience), kJ/m3 170
520
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.8
27
Strength to Weight: Bending, points 12
24
Thermal Diffusivity, mm2/s 20
4.0
Thermal Shock Resistance, points 12
17

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
17 to 20.5
Copper (Cu), % 85 to 88
0
Iron (Fe), % 0 to 0.3
65.5 to 76
Lead (Pb), % 1.0 to 1.5
0
Manganese (Mn), % 0
5.0 to 8.0
Nickel (Ni), % 0.8 to 1.5
2.0 to 4.5
Nitrogen (N), % 0
0 to 0.3
Phosphorus (P), % 0 to 1.5
0 to 0.045
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 10 to 12
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.7
0