MakeItFrom.com
Menu (ESC)

C92500 Bronze vs. C19800 Copper

Both C92500 bronze and C19800 copper are copper alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C92500 bronze and the bottom bar is C19800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11
9.0 to 12
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 310
430 to 550
Tensile Strength: Yield (Proof), MPa 190
420 to 550

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 980
1070
Melting Onset (Solidus), °C 870
1050
Specific Heat Capacity, J/kg-K 370
390
Thermal Conductivity, W/m-K 63
260
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
61
Electrical Conductivity: Equal Weight (Specific), % IACS 12
62

Otherwise Unclassified Properties

Base Metal Price, % relative 35
30
Density, g/cm3 8.7
8.9
Embodied Carbon, kg CO2/kg material 3.7
2.8
Embodied Energy, MJ/kg 61
43
Embodied Water, L/kg 390
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
49 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 170
770 to 1320
Stiffness to Weight: Axial, points 6.8
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.8
14 to 17
Strength to Weight: Bending, points 12
14 to 17
Thermal Diffusivity, mm2/s 20
75
Thermal Shock Resistance, points 12
15 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Copper (Cu), % 85 to 88
95.7 to 99.47
Iron (Fe), % 0 to 0.3
0.020 to 0.5
Lead (Pb), % 1.0 to 1.5
0
Magnesium (Mg), % 0
0.1 to 1.0
Nickel (Ni), % 0.8 to 1.5
0
Phosphorus (P), % 0 to 1.5
0.010 to 0.1
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 10 to 12
0.1 to 1.0
Zinc (Zn), % 0 to 0.5
0.3 to 1.5
Residuals, % 0
0 to 0.2