MakeItFrom.com
Menu (ESC)

C92600 Bronze vs. CC140C Copper

Both C92600 bronze and CC140C copper are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 87% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C92600 bronze and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
110
Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 30
11
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 40
44
Tensile Strength: Ultimate (UTS), MPa 300
340
Tensile Strength: Yield (Proof), MPa 140
230

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 980
1100
Melting Onset (Solidus), °C 840
1040
Specific Heat Capacity, J/kg-K 370
390
Thermal Conductivity, W/m-K 67
310
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
77
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
78

Otherwise Unclassified Properties

Base Metal Price, % relative 34
31
Density, g/cm3 8.7
8.9
Embodied Carbon, kg CO2/kg material 3.6
2.6
Embodied Energy, MJ/kg 58
41
Embodied Water, L/kg 390
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74
34
Resilience: Unit (Modulus of Resilience), kJ/m3 88
220
Stiffness to Weight: Axial, points 6.8
7.3
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.6
10
Strength to Weight: Bending, points 11
12
Thermal Diffusivity, mm2/s 21
89
Thermal Shock Resistance, points 11
12

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Chromium (Cr), % 0
0.4 to 1.2
Copper (Cu), % 86 to 88.5
98.8 to 99.6
Iron (Fe), % 0 to 0.2
0
Lead (Pb), % 0.8 to 1.5
0
Nickel (Ni), % 0 to 0.7
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 9.3 to 10.5
0
Zinc (Zn), % 1.3 to 2.5
0
Residuals, % 0 to 0.7
0