MakeItFrom.com
Menu (ESC)

C92600 Bronze vs. S31727 Stainless Steel

C92600 bronze belongs to the copper alloys classification, while S31727 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is C92600 bronze and the bottom bar is S31727 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
190
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 30
40
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 300
630
Tensile Strength: Yield (Proof), MPa 140
270

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 980
1440
Melting Onset (Solidus), °C 840
1390
Specific Heat Capacity, J/kg-K 370
470
Thermal Expansion, µm/m-K 18
16

Otherwise Unclassified Properties

Base Metal Price, % relative 34
24
Density, g/cm3 8.7
8.0
Embodied Carbon, kg CO2/kg material 3.6
4.7
Embodied Energy, MJ/kg 58
64
Embodied Water, L/kg 390
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74
200
Resilience: Unit (Modulus of Resilience), kJ/m3 88
190
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.6
22
Strength to Weight: Bending, points 11
20
Thermal Shock Resistance, points 11
14

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17.5 to 19
Copper (Cu), % 86 to 88.5
2.8 to 4.0
Iron (Fe), % 0 to 0.2
53.7 to 61.3
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.8 to 4.5
Nickel (Ni), % 0 to 0.7
14.5 to 16.5
Nitrogen (N), % 0
0.15 to 0.21
Phosphorus (P), % 0 to 0.030
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 9.3 to 10.5
0
Zinc (Zn), % 1.3 to 2.5
0
Residuals, % 0 to 0.7
0