MakeItFrom.com
Menu (ESC)

C92600 Bronze vs. S42010 Stainless Steel

C92600 bronze belongs to the copper alloys classification, while S42010 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C92600 bronze and the bottom bar is S42010 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 30
18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 300
590
Tensile Strength: Yield (Proof), MPa 140
350

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 170
800
Melting Completion (Liquidus), °C 980
1440
Melting Onset (Solidus), °C 840
1400
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 67
29
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 34
8.5
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 3.6
2.2
Embodied Energy, MJ/kg 58
30
Embodied Water, L/kg 390
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74
95
Resilience: Unit (Modulus of Resilience), kJ/m3 88
310
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.6
21
Strength to Weight: Bending, points 11
20
Thermal Diffusivity, mm2/s 21
7.9
Thermal Shock Resistance, points 11
21

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.15 to 0.3
Chromium (Cr), % 0
13.5 to 15
Copper (Cu), % 86 to 88.5
0
Iron (Fe), % 0 to 0.2
80.9 to 85.6
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.85
Nickel (Ni), % 0 to 0.7
0.35 to 0.85
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 9.3 to 10.5
0
Zinc (Zn), % 1.3 to 2.5
0
Residuals, % 0 to 0.7
0