MakeItFrom.com
Menu (ESC)

C92700 Bronze vs. C15500 Copper

Both C92700 bronze and C15500 copper are copper alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C92700 bronze and the bottom bar is C15500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 9.1
3.0 to 37
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 290
280 to 550
Tensile Strength: Yield (Proof), MPa 150
130 to 530

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 980
1080
Melting Onset (Solidus), °C 840
1080
Specific Heat Capacity, J/kg-K 370
390
Thermal Conductivity, W/m-K 47
350
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
90
Electrical Conductivity: Equal Weight (Specific), % IACS 11
91

Otherwise Unclassified Properties

Base Metal Price, % relative 35
33
Density, g/cm3 8.7
8.9
Embodied Carbon, kg CO2/kg material 3.6
2.7
Embodied Energy, MJ/kg 58
42
Embodied Water, L/kg 390
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
15 to 84
Resilience: Unit (Modulus of Resilience), kJ/m3 110
72 to 1210
Stiffness to Weight: Axial, points 6.8
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.1
8.6 to 17
Strength to Weight: Bending, points 11
11 to 17
Thermal Diffusivity, mm2/s 15
100
Thermal Shock Resistance, points 11
9.8 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Copper (Cu), % 86 to 89
99.75 to 99.853
Iron (Fe), % 0 to 0.2
0
Lead (Pb), % 1.0 to 2.5
0
Magnesium (Mg), % 0
0.080 to 0.13
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0.040 to 0.080
Silicon (Si), % 0 to 0.0050
0
Silver (Ag), % 0
0.027 to 0.1
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.7
0
Residuals, % 0
0 to 0.2