MakeItFrom.com
Menu (ESC)

C92700 Bronze vs. N07752 Nickel

C92700 bronze belongs to the copper alloys classification, while N07752 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C92700 bronze and the bottom bar is N07752 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 9.1
22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 290
1120
Tensile Strength: Yield (Proof), MPa 150
740

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 980
1380
Melting Onset (Solidus), °C 840
1330
Specific Heat Capacity, J/kg-K 370
460
Thermal Conductivity, W/m-K 47
13
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 11
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 35
60
Density, g/cm3 8.7
8.4
Embodied Carbon, kg CO2/kg material 3.6
10
Embodied Energy, MJ/kg 58
150
Embodied Water, L/kg 390
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
220
Resilience: Unit (Modulus of Resilience), kJ/m3 110
1450
Stiffness to Weight: Axial, points 6.8
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 9.1
37
Strength to Weight: Bending, points 11
29
Thermal Diffusivity, mm2/s 15
3.2
Thermal Shock Resistance, points 11
34

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0.4 to 1.0
Antimony (Sb), % 0 to 0.25
0
Boron (B), % 0
0 to 0.0070
Carbon (C), % 0
0.020 to 0.060
Chromium (Cr), % 0
14.5 to 17
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 86 to 89
0 to 0.5
Iron (Fe), % 0 to 0.2
5.0 to 9.0
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 1.0
70 to 77.1
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0 to 1.5
0 to 0.0080
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.0030
Tin (Sn), % 9.0 to 11
0
Titanium (Ti), % 0
2.3 to 2.8
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.7
0 to 0.050
Residuals, % 0 to 0.7
0