MakeItFrom.com
Menu (ESC)

C92800 Bronze vs. AISI 310HCb Stainless Steel

C92800 bronze belongs to the copper alloys classification, while AISI 310HCb stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C92800 bronze and the bottom bar is AISI 310HCb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 1.0
46
Poisson's Ratio 0.35
0.28
Rockwell B Hardness 80
82
Shear Modulus, GPa 37
78
Tensile Strength: Ultimate (UTS), MPa 280
590
Tensile Strength: Yield (Proof), MPa 210
230

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 140
1100
Melting Completion (Liquidus), °C 960
1410
Melting Onset (Solidus), °C 820
1370
Specific Heat Capacity, J/kg-K 350
480
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
28
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 4.1
4.8
Embodied Energy, MJ/kg 67
69
Embodied Water, L/kg 430
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
210
Resilience: Unit (Modulus of Resilience), kJ/m3 210
130
Stiffness to Weight: Axial, points 6.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.8
21
Strength to Weight: Bending, points 11
20
Thermal Shock Resistance, points 11
13

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 78 to 82
0
Iron (Fe), % 0 to 0.2
48 to 57
Lead (Pb), % 4.0 to 6.0
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 0.8
19 to 22
Niobium (Nb), % 0
0 to 1.1
Phosphorus (P), % 0 to 1.5
0 to 0.045
Silicon (Si), % 0 to 0.0050
0 to 0.75
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 15 to 17
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.7
0