MakeItFrom.com
Menu (ESC)

C92800 Bronze vs. EN 1.4659 Stainless Steel

C92800 bronze belongs to the copper alloys classification, while EN 1.4659 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C92800 bronze and the bottom bar is EN 1.4659 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 1.0
49
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 37
81
Tensile Strength: Ultimate (UTS), MPa 280
900
Tensile Strength: Yield (Proof), MPa 210
480

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 140
1100
Melting Completion (Liquidus), °C 960
1480
Melting Onset (Solidus), °C 820
1430
Specific Heat Capacity, J/kg-K 350
460
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
37
Density, g/cm3 8.7
8.2
Embodied Carbon, kg CO2/kg material 4.1
6.5
Embodied Energy, MJ/kg 67
89
Embodied Water, L/kg 430
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
370
Resilience: Unit (Modulus of Resilience), kJ/m3 210
550
Stiffness to Weight: Axial, points 6.4
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.8
31
Strength to Weight: Bending, points 11
25
Thermal Shock Resistance, points 11
19

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 78 to 82
1.0 to 2.0
Iron (Fe), % 0 to 0.2
35.7 to 45.7
Lead (Pb), % 4.0 to 6.0
0
Manganese (Mn), % 0
2.0 to 4.0
Molybdenum (Mo), % 0
5.5 to 6.5
Nickel (Ni), % 0 to 0.8
21 to 23
Nitrogen (N), % 0
0.35 to 0.5
Phosphorus (P), % 0 to 1.5
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 0.7
Sulfur (S), % 0 to 0.050
0 to 0.010
Tin (Sn), % 15 to 17
0
Tungsten (W), % 0
1.5 to 2.5
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.7
0