MakeItFrom.com
Menu (ESC)

C92800 Bronze vs. EN 1.4980 Stainless Steel

C92800 bronze belongs to the copper alloys classification, while EN 1.4980 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C92800 bronze and the bottom bar is EN 1.4980 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 1.0
17
Poisson's Ratio 0.35
0.29
Shear Modulus, GPa 37
75
Tensile Strength: Ultimate (UTS), MPa 280
1030
Tensile Strength: Yield (Proof), MPa 210
680

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 140
920
Melting Completion (Liquidus), °C 960
1430
Melting Onset (Solidus), °C 820
1380
Specific Heat Capacity, J/kg-K 350
470
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 36
26
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 4.1
6.0
Embodied Energy, MJ/kg 67
87
Embodied Water, L/kg 430
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
150
Resilience: Unit (Modulus of Resilience), kJ/m3 210
1180
Stiffness to Weight: Axial, points 6.4
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.8
36
Strength to Weight: Bending, points 11
28
Thermal Shock Resistance, points 11
22

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0 to 0.35
Antimony (Sb), % 0 to 0.25
0
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0
13.5 to 16
Copper (Cu), % 78 to 82
0
Iron (Fe), % 0 to 0.2
49.2 to 58.5
Lead (Pb), % 4.0 to 6.0
0
Manganese (Mn), % 0
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0 to 0.8
24 to 27
Phosphorus (P), % 0 to 1.5
0 to 0.025
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 15 to 17
0
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.7
0