MakeItFrom.com
Menu (ESC)

C92800 Bronze vs. EN AC-51100 Aluminum

C92800 bronze belongs to the copper alloys classification, while EN AC-51100 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C92800 bronze and the bottom bar is EN AC-51100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
68
Elongation at Break, % 1.0
4.5
Poisson's Ratio 0.35
0.33
Shear Modulus, GPa 37
26
Tensile Strength: Ultimate (UTS), MPa 280
160
Tensile Strength: Yield (Proof), MPa 210
80

Thermal Properties

Latent Heat of Fusion, J/g 170
400
Maximum Temperature: Mechanical, °C 140
170
Melting Completion (Liquidus), °C 960
640
Melting Onset (Solidus), °C 820
620
Specific Heat Capacity, J/kg-K 350
900
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
34
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
110

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 4.1
8.7
Embodied Energy, MJ/kg 67
150
Embodied Water, L/kg 430
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
6.0
Resilience: Unit (Modulus of Resilience), kJ/m3 210
47
Stiffness to Weight: Axial, points 6.4
14
Stiffness to Weight: Bending, points 18
51
Strength to Weight: Axial, points 8.8
17
Strength to Weight: Bending, points 11
25
Thermal Shock Resistance, points 11
7.3

Alloy Composition

Aluminum (Al), % 0 to 0.0050
94.5 to 97.5
Antimony (Sb), % 0 to 0.25
0
Copper (Cu), % 78 to 82
0 to 0.050
Iron (Fe), % 0 to 0.2
0 to 0.55
Lead (Pb), % 4.0 to 6.0
0
Magnesium (Mg), % 0
2.5 to 3.5
Manganese (Mn), % 0
0 to 0.45
Nickel (Ni), % 0 to 0.8
0
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0 to 0.55
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 15 to 17
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.8
0 to 0.1
Residuals, % 0
0 to 0.15